
670 

Acta Cryst. (1971). A27, 670 

The Fourier Coefficients of Paraerystalline X-ray Diffraction* 
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Theoretical expressions are presented for the Fourier coefficients, derived in terms of a linear 'ideal 
paracrystaUine' lattice defined by Hosemann. These coefficients are related to the 'coordination statistic' 
of paracrystallites and their size distribution. The expressions have been used to review earlier Fourier 
transform analyses on 'Marlex 50' polyethylene and various heat-treated samples of petroleum coke 
and it has been established that these substances have a homogeneous paracrystalline disorder. Up-to-date 
results of the X-ray diffraction line-profile analyses of various paracrystalline substances are summarized 
and discussed. 

Introduction 

The theory of paracrystals (Hosemann & Bagchi, 1962) 
is able to explain satisfactorily the diffraction effects of 
quasiperiodic structures, such as natural and synthetic 
fibres (Kulshreshtha, Patil, Dweltz & Radhakrishnan, 
1969; Ochainski, 1967; Schnabel, 1969; Zannetti, 
Celotti & Fichera, 1969), disordered layer structures 
like graphite carbons (Ruland, 1965), mixed crystals 
like Mn spinels (Vogel, 1969) and Fe-A1 alloys (Hose- 
mann, Bialas, Sch~nfeld, Wilke & Weick, 1966); 
molten metals (Hosemann & Lemm, 1965), vitreous 
substances like silica and binary glasses (Domenici & 
Walther, 1965), and liquid crystals (Hosemann, Lemm 
& Wilke, 1967). All these substances seldom crystallize 
with a perfect lattice and are, in general, built up from 
a large number of arbitrarily oriented crystallites of 
various sizes, each crystallite varying in order. This 
micro-heterogeneity can be examined by methods of 
X-ray diffraction line-profile analysis which have been 
carried out on cold-worked metals and metallic solid 
solutions (Warren & Averbach, 1952; Wilson, 1962; 
Langford & Wilson, 1963; Mitra, 1964). 

While interpreting the results of line-profile analyses, 
it should be borne in mind that the lattices in these 
substances are 'paracrystalline', where the primitive 
translations of an ideal lattice are replaced by statistic- 
ally distributed vectors which can vary both in magni- 
tude and direction from cell to cell. These lattice distor- 
tions, which destroy the long-range order, are design- 
ated as Type II distortions. The diffraction diagrams 
of paracrystallites show a broadening of the reciprocal 
lattice node in addition to that caused by the finite size 
of crystallites. The effects of Type II distortions on the 
X-ray diffractograms have been studied using an 
analysis of the optical diffraction patterns of various 

* This research was performed by A. K. Kulshreshtha and 
will form a part of his Ph. D. thesis entitled 'Studies of Order 
in Fibrous Polymers by X-Ray Diffraction, with Special Re- 
ference to Cellulose' to be submitted to the Gujarat University. 

lattice models (Bonart, Hosemann & McCullough, 
1963; Hosemann & Mtiller, 1970). 

The line-profile studies of this class of substances, 
especially those involving the calculation of the mo- 
ments and Fourier transforms of the profile, have 
rarely been discussed and, in many of the cases where 
they have, have not been correctly interpreted. Recently, 
Kulshreshtha, Dweltz & Radhakrishnan (1971 a) have 
emphasized the need to distinguish between the dif- 
fraction effects of substances having Type I (thermal 
or frozen-thermal) and Type II (fluid-statistical or 
paracrystalline) lattice distortions and have contributed 
to the development of a general theory and a computer- 
based methodology of line-profile analysis for substan- 
ces characterized by Type II distortions (Kulshreshtha, 
Kothari & Dweltz, 1971; Kulshreshtha, Dweltz & 
Radhakrishnan, 1971 b). 

The present paper describes a theory in which the 
Fourier transform analysis of the radial diffraction 
profiles of these substances is used to separate the size 
and distortion effects. It thus attempts to extend the 
Warren-Averbach technique of line-profile analysis by 
Fourier coefficients to the case of a powder of one- 
dimensional paracrystals by developing the theory to 
cover Type II distortions. The utility of the expressions 
presented here is illustrated by an attempt to re- 
interpret the earlier results of Fourier analysis on 
linear polyethylene (Katayama, 1961) and petroleum 
coke powders, heat-treated at various temperatures 
(Popovic, 1969). 

Theory for the Fourier transform analysis of 
paracrystalline substances 

Let us consider a one-dimensional paracrystalline array 
of lattice points along the b direction. In Hosemann's 
(1962) model of an 'ideal paracrystal', the distances 
between successive lattice points X~, i= 1, 2, . . .  m, . . .  
constitute a sequence of random variables, which are 
identically distributed according to the 'coordination 
statistic' or the probability density h(t), t =mb denoting 
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a distance along the b axis. The higher partial statistic 
h,,(t) is given by the multiple convolution of h(t) 

Iml 

h,,(t)=h(t) (1) 

and governs the distribution of the distance 

Sm=XI+X2+. . .+Xm 
between the origin and the mth lattice point. The 
expression on the right hand side of equation (1) 
means the self-convolution of h(t), Im[ - times. Let 
S~, denote the displacement of the mth lattice point 
from its ideal site, relative to the origin. Then 

S'm=S"-(Sm)=s,,-mb } (2) 

where b = (X~), is the average spacing between adjacent 
lattice points and the brackets denote the mathematical 
expectations of the term they enclose. Variance of S~, 
is given by 

2 _ _  '2 __ A , , - ( S , , ) - I m I A  z where Az=(X~)  (3) 

The coefficient of variation of the lattice spacing is 

A 
g=  -b-" (4) 

The Q-function, i.e. the distance-statistics function is 
given by 

oo 

40 = Z h,Xt) (5) 
/1'I= ~ O 0  

The Fourier transformation of z(t) gives the expression 
for the interference function, i.e. the 'paracrystalline 

lattice factor' Z(S), where S -  2 sin 0 Z is the distance of 

/ 
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Fig. 1. - I n  Fr(m) vs. rn plots for 110 and 220 reflexions of 
annealed 'Marlex 50' polyethylene filaments measured at 
-196 and 20°C. 

the node 0k0 from the origin of the reciprocal lattice, 
and 2 the wavelength of X-rays. Thus 

where 

oo 

Z(S)= ~ F.T. [h,,(t)] (6) 
//Im - - O 0  

f o o  F.T. [z(t)]= _of(t) exp (-2foiSt) dt 

denotes the Fourier transform of z(t). The Fourier 
series representation of Z(S) can be easily understood 
with the help of equation (6), which gives 

oo 

Z(S)= ~ [Y(k,m) exp (-2zdmbS)],  (7a) 
/?1~ - -00  

where the distortion Fourier coefficients are 

Y(k,m)=.l(m) - iK(m) = F.T. [h,,(t + mb)] 
=(exp ( -  2rciSS'm))= Hm(S)=[H(S)] Iml (7b) 

and 

J(m) = (cos 21~SS'm)= ½IBm(S) + H~* (S)] 
1 

K(m)= (sin 2~ZSSm) - 2i [H, , (S)-  H*m(S)] . (7c) 

The asterisk (*) denotes the complex conjugate and k 
the order of reflexion. The meaning of Hm(S) will be 
discussed in the Appendix. The line profile due to 
Type II distortions can thus be expressed as 

2 Z(s) = [J(m) cos 2tombs-K(m) sin 2mnbs] 
t n = - - o o  

where s = ( S - S o )  is the actual distance by which S 
misses the node So of the reciprocal lattice. The Gaus- 
sian approximation for hm(t+mb) will be valid for 
small Iml if the displacements S~, are small and also 
for large Iml by the virtue of the central limit theorem. 
In this case the imaginary coefficients K(m) will be 
vanishingly small and the real coefficients (Kulshresh- 
tha, Dweltz & Radhakrishnan, 1971) will be 

o r  

J(m) = exp (-2z~ 2 A z S21ml) | 

2rcZgZkZ 
J( t )=exp  ( -~ l t l ) ;  c~ - b 

(8) 

(The Appendix describes an alternative method of 
deriving the expressions for the distortion line profile 
and its Fourier coefficients). 

The observed profile, obtained after correction for 
instrumental factors by the method of Stokes (1948), 
is a convolution of the size-broadened profile and the 
distortion-broadened profile. The Stokes corrected 
real (cos) and imaginary (sin) coefficients are therefore 
given by 

v(t) 40 } 
Fr(t) = V - ~  (9a) 

_ V(t) (cos 2roSS',,,) 
1.'(o) 

A C 2 7 A  - 11" 



672 THE F O U R I E R  COEFFICIENTS OF PARACRYSTALLINE X-RAY D I F F R A C T I O N  

F,(t)= V(t) K(t) 
V(O) 

V(t) (sin 2~SS~,) 
v(o) 

outside which z(t) assumes a constant value, and 
obtains the following relation 

dhkl 
(9b) tM- (2.5 g)2 

where V(t) is the volume common to the crystal and 
its ghost obtained through a translation t = m b  along 
the normal to the reflecting (0k0) planes (Wilson, 1962). 
For small degrees of distortion 

v(t) 
F,(t) ~ _ ~ exp (-2z~zS z ( S ~ ) )  

or 
In F,(t) = In [V(t) /V(O)]-2g2S z (S'm z) (I0) 

Thus, if two orders of reflexion are available, equation 
(10) can be used to separate the size and distortion 
effects (Warren & Averbach, 1952). The resulting 
values (S~)  can be interpreted according to equation 
(3) for Type II distortions and V(t)/V(O) according to 
standard procedures (Bertaut, 1949; Smith & Simpson, 
1965). However, if more than two orders are available, 
the separation of size and distortion effects is better 
achieved by Harrison's (1967) method, which yields 
V(t)/V(O) and various even and odd moments of Sm 
as a function of t[cf. equations (9a) and (9b)] which, 
in turn, can be utilized to synthesize the partial 
statistic hm(t + mb). 

The size coefficients can be approximated as 

V(t) 
V(O) _~exp ( - f l l t l ) ,  

1 I 1 g ( M ) d M  (11) 

where 

and g(M)  denotes the frequency function of crystallite 
lengths M. Expression (11) is a good approximation 
in the case of fibrous polymers and can be derived in 
terms of various stochastic models for the placement 
of crystallites along the length of a fibre. Thus, from 
equations (8), (9a) and (11): 

F,(t) ~ _ exp [-(c~+fl)ltll 
o r  

lnF ' ( t )  ~ [ 27zzg~k2 M-~] - - ----b----  + l t l .  (12) 

The utility of this equation will be illustrated with the 
help of a suitable example. The methodology for com- 
puting the Fourier coefficients and thereby obtaining 
the co-ordination statistic and size distribution of 
paracrystallites will be discussed elsewhere. 

Equilibrium paracrystallite size 

Vainshtein (1966) defines the interaction radius tM of a 
paracrystalline lattice as the region of order in z(t), 

o r  

~/ t M 
g d~u " 0 . 4 .  (13) 

This relation shows that the average size of the 
coherently diffracting domains is inversely proportional 
to the degree of disorder g, dhkz denoting the average 
spacing between the reflecting planes. In practice, 
however, one obtains the crystallite size values which 
are much smaller than predicted by equation (13). 
Hosemann, Loboda-Cackovic & Wilke (1968) define 
a dimensionless parameter e' as 

c( = g ~r-£/dhk ~ (14) 

where L is the 'weight-average' size of the paracrystal- 
lites along the normal to the reflecting planes and is a 
measure of the micro-heterogeneity of the substance 
under examination. The use of this parameter is, 
however, open to criticism since it is obtained through 
the integral breadth analyses which involve arbitrary 
assumptions regarding profile shapes. The moment and 
Fourier transform methods are theoretically sound and 
very suitable for studying the imperfections in para- 
crystalline substances and yield the number-average 
crystallite size ASrl (Guinier, 1963). We therefore define 
an analogous parameter e" as 

cd'= g [/-~/d~k, . (15) 

The relation between e' and e" is obviously dependent 
upon the size distribution of paracrystallites. In gen- 
eral £>cd' ,  and for a Cauchy-like size profile, a ' =  
]/2a". 

A reinterpretation of earlier results on the Fourier 
analysis of polyethylene and petroleum cokes 

The first study on the Fourier analysis of polymeric 
X-ray diffraction profiles was carried out by Katayama 
(1961), who investigated the line broadening in an- 
nealed 'Marlex 50' polyethylene filaments at two dif- 
ferent temperatures ( -196°C and 20°C). He observed 
that the distortion line profiles had an approximately 
Cauchy form, but his interpretation of the Fourier 
coefficients was incorrect, being based on the stress- 
strain model of disorder. As a result of this erroneous 
interpretation, he obtained an infinite crystallite size 
in polyethylene and his estimate of strain was at least 
an order of magnitude higher than those found in 
cold-worked metals. Obviously, such a large crystallite 
size cannot be envisaged in fibres. Later Hosemann, 
Balta-Calleja & Wilke (1966) could prove by means of 
integral breadth analysis that lattice distortions in 
various linear and branched polyethylenes were 'para- 
crystalline' in character and obtained paracrystallite 
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size values in the range 200-500/~ with g-values of 
2-3 %. 

In Fig. l, - I n  F,(m) vs. m plots are given for 110 
and 220 reflexions of polyethylene studied at - 196 and 
20°C, as obtained after replotting Katayama's data 
(In A ,  vs. n in his notation). The replotting was done 
by reading individual values from an enlarged photo- 
graph of the curves published by him (Katayama, 1961). 
The present plots (Fig. 1) are straight lines passing 
through the origin in conformity with equation (12) 
derived for a fibrous paracrystal. This behaviour 
suggests the presence of a Gaussian coordination 
statistic in the paracrystalline lattice of polyethylene, 
rather than a Cauchy distribution of strains as con- 
cluded by Katayama (1961). Analysis of the data in 
this way suggests the values of 205 and 295 A for 21~ 
and g-values of 2.8 and 2.6 % respectively for the sam- 
ples studied at - 196°C and 20°C. 

Popovic (1969) investigated powdered samples of 
petroleum coke, heat-treated at various temperatures, 
by carrying out a Fourier analysis of the 00l reflexions. 
He, however, used the Warren-Averbach interpreta- 
tion (1952) of cold-worked metals and alloys for these 
substances, which possess a distinctly different lattice 
structure. He plotted the values 'of ; ( S ~ )  1/z vs.  t, 
[ ( (AL)~)  1/z vs .L in his notation] for various samples 
obtained from the Fourier analysis [cf. equation (10)]. 
In this way, he obtained curves which were far from 
linear. Fig. 2 illustrates ( S ~ )  vs. t plots for various 
samples obtained after replotting the values taken 
from the original curves of Popovic (1969). These 
plots are all straight lines passing through the origin, 
as is to be expected from the relation (3) for an 'ideal 
paracrystal', g-values for various heat-treated samples 
can be obtained by making use of the slopes of these 
lines and the d002 values listed by Popovic (1969) for 
these samples. The values of/tTq, also listed by him (L~ 
in his notation), would be complementary to the g- 
values in understanding the fine structure of these 
samples. 

A summary of results of line-profile analyses on 
paracrystalline aggregates 

Table 1 gives a summary of results derived in the pres- 
ent work from earlier existing data and also includes, 
for the sake of comparison, the results of Buchanan & 
Miller (1966), Hosemann & Lemm (1965); Hosemann, 
Bialas, Sch/Snfeld, Wilke & Weick (1966), Hosemann, 
Lemm & Wilke (1967), Hosemann & Mfiller (1970), 
Kulshreshtha, Patil, Dweltz & Radakrishnan (1969) 
and Kulshreshtha, Dweltz & Radakrishnan (1971 b) on 
various paracrystalline substances. 

The results on 'Marlex-50' polyethylene filaments 
indicate that cooling of the specimen from 20 to 
- 196 °C generates a higher lattice disorder as evidenced 
by a decrease in the paracrystallite size and an increase 
in the g-value. Further, the g and _/Q~ values, calculated 
by the present method, for these samples are in good 
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treated at various temperatures. 
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agreement with the values calculated by Hosemann 
et al. (1970) for various polyethylenes. 

The results on petroleum cokes show that with in- 
creasing temperature of heat-treatment, the lattice 
order improves as shown by increasing paracrystallite 
size and decreasing g-values. It can be concluded that 
the lattice planes or layers in petroleum coke retain a 
paracrystallite arrangement throughout the process of 
a gradual transition from the non-graphitic carbons 
towards the graphitic ones. 

Table 1 also lists the values of c~' and e" for various 
substances. It can be seen that for most of the sub- 
stances, c~' or ~" values are centred around 0.16, where- 
as for fibres of cellulosic origin they tend to lie around 
0.08. A summary of these results in presented in Fig. 3, 
which shows a plot of the g-value against (dhkl / l~l)  1/2 
or (d~kJL) 1/2. A correlation coefficient of the order of 
0.85 is obtained. The scatter of points, which becomes 
large as paracrystallite size I decreases, may be due 
to (i) the substances belonging to different classes, (ii) 
the substances being investigated by different groups of 
workers and (iii) an inverse inter-relation between the 
errors in the two parameters. 
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A P P E N D I X  

The distance statistics function is 
GO 

z(t)=~(t--O)+ ~ [hm(t)Wh-m(t)]. 
m=l 

The lattice factor is 

Z(S)=F.T. [z(t)] 

= 1 + ~ F.T. [h~(t)]+ ~ F.T. [hm(-t)]. 
m=l m----1 

The Fourier transforms of hm(t) are called 'statistic 
amplitudes'. Thus 

Fm(S)= F.T. [hm(t)] = Hm(S) exp ( -  2~zimbS) 
= [F(S)] Iml (16) 

F_m(S)=F.T. [hm(-t)]=H~,(S) exp 2zcimbS 
=[F*(S)] Iml 

where 
H,,(S)=F.T. [hm(t +mb)] 

nm*(S) : F.T. [hm(- t-mb)] 

and * denotes the complex conjugate. We have 

oo 
Z(S) = ~ [FM + F *lml] - 1 

m=0 

_ 1 - I F I  2 S # 0  (17 )  
- 1 + IFI2-21FI cos 2nbS ' 

For a Gaussian coordination statistic, IF[ is given by 
exp (-2~z2g2k 2) and 

sinh(27r2g2k2) (18) 
Z ' ( S ) =  cosh(2rc2g2k2)_cos 2rcb S • 

The line-profile is obtained by replacing S by s=  
(S-So)  and becomes, for small g-values 

1 2~ 2zrEg2k 2 
Z'(s) ~- -~ • (~2 +4zcEs 2) ; ~= b (19) 

The real distortion Fourier coefficients are 

since 

J ( t )=  l Z'(s) exp (2nist) ds 

=exp (-c~[tl) 

Z ' ( s )=  ~ exp (-c~blml-2~zillmlbs). 
Itl~ --00 

The coordination statistic is obtainable through the 
Fourier coefficients J(m) and K(m) [cf. equations (7c) 
and (16)]. 
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